- Data Preprocessing
- Regression
- Simple Linear Regression
- Multiple Linear Regression
- Polynomial Regression
- Support Vector Regression (SVR)
- Decision Tree Regression
- MRandom Forest Regression
- Evaluating Regression Models Performance
1. Data Preprocessing
- Overview of Data Preprocessing
- Get the dataset
- Importing the Libraries
- Importing the Dataset
- Missing Data
- Categorical Data
- Splitting the Dataset into the Training set and Test set
- Feature Scaling
- How to Set Up Working Directory
2. Regression
3. Simple Linear Regression
- How to get the dataset
- Dataset + Business Problem Description
- Simple Linear Regression Intuition
- Simple Linear Regression in Python
- Simple Linear Regression in R
4. Multiple Linear Regression
- How to get the dataset
- Dataset + Business Problem Description
- Multiple Linear Regression Intuition
- Multiple Linear Regression in Python
- Multiple Linear Regression in Python - Backward Elimination - Preparation
- Multiple Linear Regression in R
5. Polynomial Regression
- Polynomial Regression Intuition
- How to get the dataset
- Polynomial Regression in Python
- Python Regression Template
- Polynomial Regression in R
- R Regression Template
6. Support Vector Regression (SVR)
- How to get the dataset
- SVR in Python
- SVR in R
7. Decision Tree Regression
- Decision Tree Regression Intuition
- How to get the dataset
- Decision Tree Regression in Python
- Decision Tree Regression in R
8. Random Forest Regression
- Random Forest Regression Intuition
- How to get the dataset
- Random Forest Regression in Python
- Random Forest Regression in R
9. Evaluating Regression Models Performance
- R-Squared Intuition
- Adjusted R-Squared Intuition
- Interpreting Linear Regression Coefficients